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The determination of abstract models of complex chemical mechanisms from the analysis of the experimental
time series of the concentration of species is a topic of undoubted interest. Doing so from time series in the
linear regime offers certain advantages because the equations of evolution can be easily retrieved. This contrasts
with the much greater ambiguity associated to the corresponding process in the nonlinear regime. However,
until presently, the procedure has not been formalized, and known methods of inference of the mechanism
still rely too much on guess. The aim of the present article is to remedy to this problem by offering a systematic
procedure for carrying out the deduction of the mechanism within the framework of the law of mass action.
The number of independent steps and actual values of both the stoichiometric coefficients and of the rate
constants are calculated from the linear equations governing the time response of chemical species to a small
pulse perturbation of the steady state. Also, the deduction of these linear equations from that same response
is outlined.

I. Introduction

When confronted to an unknown chemical mechanism, an
interesting question may be raised: is it possible to devise
single-handedly a prototypical reaction network model from the
observed time evolution of reacting species? In other words,
do experimental time series convey enough information for
producing, in a more or less systematic way, a sensible
mechanism? Although the question has been already af-
firmatively answered in the literature,1 the topic is ripe for further
elaboration and improvement. The purpose of the present article
is to contribute to this line of action.

Surprisingly, chemically sensible modeling expectations may
be satisfied if we define the problem within the context of time
series in the linear regime. Here, there exists a one-to-one
correspondence between an algebraic representation of the
trajectory fitting the time series and the linear equations of
motion around steady state

whereδX is a small perturbation andJ is the Jacobian matrix,
taken to be the linearization at steady state of the chemical rate
equations. From the knowledge of its solutionsa combination
of exponentialsseq 1 can be formally reconstructed. This idea
has been exploited by Chevalier et al.1 They review different

useful techniques for obtaining the Jacobian matrix elements
(JMEs). Among them we emphasize that which makes use of
the time series generated in response to a small pulse perturba-
tion in some reactant.2 Once the JMEs have been determined,
a close examination of their sign pattern offers a hint on how
the different species react: for example, a positive JME, say
Jij, may be interpreted as a direct participation of speciesXj in
the production of speciesXi. The heuristics has been successfully
applied1 to the DOP model,3 although little can be inferred on
the specific values of both the stoichiometric coefficients and
rate constants.

The previous procedure for the inference of a set of reactional
steps from the signs of the JMEs is not devoid of great sources
of ambiguity,1,4 even in those models, as the DOP, to which it
can be applied with relative success. In short, it yields acceptable
skeletal model networks whenever each one of the off-diagonal
JMEs is reasonably allocable to a single step or, at least, to a
single dominating step. Even so, the method relies more on
guesssand lucksthan on a well-prescribed set of working
rules.1,4

We present here a systematic method for providing a complete
specification of a chemical mechanism from the knowledge of
the JMEs. This is done by calculating the number of steps,
stoichiometric coefficients, and rate constants. The method is
systematic in the sense that it rephrases the problem in the
context of the solution to a set of algebraic equations for the
reaction rates. If the JMEs, computed from an experimental time
series, are well defined, and we consider that all reactions
proceed according to the law of mass action, then the compat-
ibility conditions for that set of equations lead to the deduction
of (1) the minimal set of independent steps compatible with
the Jacobian matrix and (2) the stoichiometric coefficients of
the reactants. Once these have been calculated, the equations
are solved and the rate constants obtained.
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From a very general point of view, each one of the two
necessary, sequential steps for getting the chemical mechanism
from an experimental time series in the linear regime around
steady state raises its own problems. The first step is the
obtainment of the JMEs themselves, which must be accurate
enough to capture the structure of the mechanism. This raises
inevitably the question of to what extent can we trust those
calculated JMEs, which is of course a question the answer of
which involves many issues concerning both the sampling of
data and their subsequent numerical treatment. The second step,
which concerns the inference of the mechanism itself, depends
strongly on the amount of information available. What is clear
is that the more reliable the obtained Jacobian is, the better shall
we be able to pinpoint systematically at a plausible, well-defined
mechanism from a single Jacobian. However, within the bounds
set by a limited accuracy in delivering the JMEs, the inference
procedure faces an optimization problem, which is that of
defining what amount of experimental measurements is neces-
sary in order to compensate for possible fuzzy entries of a single,
empirical Jacobian. Unfortunately, the whole issue is manifold
and cannot be encapsulated in a single, uninterrupted treatment.

In the present article, we restrict ourselves to the description
of the basic structure of the algorithm that permits us to carry
out the deduction of the mechanisms from the knowledge of
the JMEs. Here, those JMEs shall be considered exactly known.
Although it is an ideal situation, the bulk of the method will
still be applicable to more realistic cases, albeit with appropriate
adaptations. The issues concerning the calculation of the JMEs
from noisy data, their reliability, and the possible adaptations
in the method require separate analysis and publication.

In section II, we outline our procedure for calculating the
JMEs from the response in time of the concentrations of
reactants following a small pulse perturbation to a stable steady
state. Section III is devoted to the development of the general
method for reconstructing the chemical mechanisms from the
knowledge of the JMEs. A simple example illustrates it. In
section IV, we disclose certain features of the method that were
not apparent in section III. Section V contains a discussion on
directions for future research. We conclude in section VI.

II. Retrieving the Jacobian from Experimental Time
Series

The first problem is that of obtaining the Jacobian,J, in (1),
from experimental measurements. The issue has been reviewed
by Chevalier et al.1 The methods that seem to offer the best
results use the measured time response of the reactants to a pulse
perturbation around some reference steady state. One of them
is the method of multilinear least-squares fit, which seems
particularly attractive as far as it involves information of the
complete time response. In order to avoid instabilities due to
numerical differentiation, Chevalier et al.1 suggest a fit of the
time series to the general solution of the linear equation (1):

The main drawback of this approach is that a straightforward
fit to a sum of exponentials, with undetermined exponents,λi,
is sometimes numerically problematic. To overcome this dif-
ficulty, Sorribas et al.4 proposed to reconsider the target problem
of the least-squares fit procedure. The idea is the following: if
ti, i ) 1, ..., N, denote the sampling times, then the formal
solution to (1) can be written as

If the sampling period is a constant,h, (3) yields

The problem is then reduced to a simple multilinear regression
with matrix Φ in (4) as the output. A nonnegligible advantage
is that the correlation coefficient of the fit gives the possibility
of checking whether the measured series is within the linear
regime or not. Upon knowingΦ in (4), the eigenvalues of the
Jacobian,λi, are easily calculated in terms of those of matrix
Φ, Λi:

Once theλi have been computed and substituted in (2), the
process of fitting a combination of exponential functions to the
time series becomes an easy task. The JMEs are hereupon
computed by a simple procedure, the technical details of which
can be found in the literature.1,4

The advantages of the variant just presented are easy to
enumerate: (1) no differentiation is needed; (2) eigenvalues and
multiplicities are straightforward to calculate; (3) both regres-
sions, on (4) and (2), are linear with unique solution, thus
eliminating the sensitivity to an initial guess for problem
parameters, as happens in nonlinear regression.

The method yields very satisfactory results in the case of a
nondegenerate spectrum but fails at producing the right multi-
plicity of eigenvalues in the degenerate case. The computation
of eigenvalues of matrixΦ is very sensitive to noise and round-
off errors, making the approach not to be recommended unless
the multiplicities of the eigenvalues are exactly known. In order
to avoid the rather problematic computation of eigenvalues, we
can resort to a slight variation of the previous method. (4) can
formally be rewritten as

and expanded in its Taylor series

which holds for||Φ - I || e 1. The norm is understood in the
usual sense for operators.5 By virtue of the properties of the
norm, (6) is valid whenever

Since||J|| is always greater than the modulus of its greatest
eigenvalue,λmax, (6) is valid whenever

Condition 8 means that the sampling frequency must be such
that the greatest time scale in the relaxation process toward
steady state is caught. By applying (6), we can directly obtain
the Jacobian from matrixΦ, without any intermediate search

δX(t) ) ∑
i)1

n

F(i)eλit (2)

δX(ti+1) ) exp[(ti+1 - ti)‚J]‚δX(ti) (3)

δX(ti + h) ) exp[h‚J]‚δX(ti) ) Φ‚δX(ti) (4)

λi )
ln(Λi)

h

J ) 1
h

ln Φ ) 1
h

ln[I + (Φ - I )] (5)

J ) 1
h[(Φ - I ) -

(Φ - I )(Φ - I )
2

+ ...] (6)

||Φ - I || e e||J|| - 1 e 1 (7)

h e
ln 2

|λmax|
(8)
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for eigenvalues. The shortcut is certainly beneficial, and the
approach yields a faster convergence to the JMEs.

III. Deriving the Reactional Mechanism from the
Jacobian

A. General Procedure. We shall now detail the general
procedure that permits the derivation of the unknown mechanism
starting from the knowledge of the Jacobian. For that we assume
the mechanism to be constituted ofm generic reactional steps

where the values ofm, of the stoichiometric coefficients, and
of the constants of reaction are to be determined. In order to
define the problem in a proper mathematical context, let us write
the equations of evolution for species concentrations, according
to the law of mass action

In (10) νs stands for the rate of reaction of thesth step

γis ) âis - Ris, andφi means a controlled constant rate of feeding
of the reaction with speciesXi, either by chemical or mechanical
means.

If system 10 has a steady-state solution,Xi,0, i ) 1, ...,n, a
straightforward calculation leads to the following relations

whereJij are the entries of the Jacobian matrix in (1)

We can now define properly the problem. Our purpose is to
solve (12) in order to uncover of theunknownmechanism 9.
That is, we intend to obtain the following:

(a1) the number of steps,m;
(a2) the stoichiometric coefficients,Ris, γis, i ) 1, ...,n, s )

1, ...,m;
(a3) the rate constants,ks, s ) 1, ...,m.
This is to be performed by assuming that we know the

following:
(b1) the number of species,n;
(b2) the steady-state concentrationsXi,0, i ) 1, ...,n;
(b3) the entries of the Jacobian matrix,Jij, which have been

supposedly obtained from experimental measurements;
(b4) the constant rates of feedingφi, i ) 1,.... ,n.
The key to the solution of this problem is to consider (12) as

a set ofn2 + n linear equations for the variablesνs,0, s ) 1, ...,
m, with low integer coefficients,γisRjs, and known right-hand

side (φi,0, JijXj,0). The first objective is the determination ofm
(number of steps).

1. Determination of the Number of Steps, m.Let fix our
attention on (12b) and handle it as a linear system wherem is
the number of problem variables,νs,0, and therefore the number
of equations needed to find an explicit solution. Ifn2, the actual
number of equations (12b), is higher thanm, there must bep ≡
n2 - m redundant equations. As the stoichiometric coefficients,
R andγ, are low integers, thesep redundant equations must be
linear combinations, with low integer coefficients, of them
independent ones. Upon looking at (12b), we can easily infer
that all this means that onlym entries JijXj,0 are actually
independent, and thep ) n2 - m remaining entries must in
fact be related to thosem independent ones by linear combina-
tions with low integer coefficients.

Thus, to determine the value ofm, one has to identify the
independent entries in the matrix of coefficientsJijXj,0. This can
be done by a simple automatic procedure that spots at possible
integer dependences among those entries. The result is a set of
p relations of the form

where theIij
(r) are in the form of low integers. Consequently,m

) n2 - p.
2. Equations for the Stoichiometric Coefficients and Their

Determination.Once we have obtained the value ofm, all we
have to do is to insert (14) into (12b) and, by considering all
νs,0 linearly independent, obtain

What can be inferred from (15) is not yet the actual numerical
values of the coefficientsR’s andγ’s. In fact, for each of them
reactional steps, (15) only providesp nonlinear relationships
among 2n variables. This implies that theR’s and γ’s can
actually be produced from (15) as parameter-dependent functions

In practice, many of those functions (16) are found to be
identically null because most reactional steps do not involve
more than a fraction of alln species. On the other hand, those
that are nonnull are in the form of very simple linear combina-
tions of the parametersµR.

The specific values of theµR’s are found in the following
way:

(1) Substitute (16) into the subset ofm independent equations
in (12b). The result is in the form ofm functions

(2) Put (17) into (12a) and solve for theµR’s in terms of the
known feeding rates,φi. This yields

which solves, together with (16), the problem of the stoichio-
metric coefficients.

3. Determination of the Rate Constants, ks. The only
remaining unknowns are the ratesνs,0, that can now be
straightforwardly recovered from (17). These values, together

∑
i)1

n

RisXi 98
ks

∑
j)1

n

âjsXj, s ) 1, ...,m (9)

dXi

dt
) ∑

s)1

m

γisνs + φi, i ) 1, ...,n (10)

νs ) ks∏
l)1

n

Xl
Rls, s ) 1, ...,m (11)

∑
s)1

m

γisνs,0 ) -φi,0, i ) 1, ...,n (12a)

∑
s)1

m

Rjsγisνs,0 ) JijXj,0, i, j ) 1, ...,n (12b)

Jij ) ∂

∂Xj
(dXi

dt )|X0
(13)

∑
i,j

n

Iij
(r)(JijXj,o) ) 0, r ) 1,...,p (14)

∑
i,j

n

Iij
(r)(Rjsγis) ) 0, r ) 1, ...,p, s ) 1, ...,m (15)

Ris(µ1, ...,µR), γis(µ1, ...,µR) (16)

νs,0(µ1, ...,µR) (17)

µR(φi, ...,φn) (18)
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with (11), lead to the computation of the rate constantsks. The
mechanism is then fully retrieved and the procedure terminated.

All this process can be illustrated by the following example.
B. Example 1.We may understand the previous procedure

in all its details by checking what it gives in the simple system6

Let us assume that we are supplied with the valuesXi,0 and
φi, i ) 1, 2, 3, and with the Jacobian matrix, as shown in Table
1. We wish to recover from those data the complete mechanism
(19). We start by constructing matrixΨ, of entriesΨij ) JijXj,0,
as displayed in Table 1. With this information at hand we
proceed by applying the previous procedure step by step.

It is quite easy to verify that just three of the entries of matrix
Ψ are independent:J11X1,0, J22X2,0, andJ33X3,0. Thus the number
of steps,m, is equal to three as expected.

Additionally, we getp ) 6 linear relationships (see (14)).

By inserting (20) into (12b), we find the particular realization
of (15) for the present case:

where

We get three parameter-dependent solutions to (21)

where

with a, b, c being natural numbers, andd, e, f, integers.
Each one of the row vectors in (22) stands for one of them

) 3 independent steps of the mechanism. Consequently, from
what we know up to now, we can already write a generic
prototype mechanism

The range of values for the parametersd to f have been set
such as to satisfy the requirementsâij g 0 in (9).

Taking into account (12b), (22), and the values ofΨ in Table
1, we solve for theνs,0 and get

We substitute (22) and (24) into (12a)i, only a, b, andc appear
explicitly in the resulting system, which, once solved, yields

TABLE 1: Input Data in Example 1

2X1 98
k1

2X2 (19a)

X2 + X3 98
k2

2X3 (19b)

X1 + X3 98
k3

P (19c)

J12X2,0 ) 0

J13X3,0 ) J22X2,0 + J33X3,0

J21X1,0 ) -J11X1,0 + J22X2,0 + J33X3,0 (20)

J23X3,0 ) J22X2,0

J31X1,0 ) J22X2,0 + J33X3,0

J32X2,0 ) -J22X2,0

R2sγ1s ) 0

R3sγ1s ) R2sγ2s + R3sγ3s

R1sγ2s ) -R1sγ1s + R2sγ2s + R3sγ3s

R3sγ2s ) R2sγ2s (21)

R1sγ3s ) R2sγ2s + R3sγ3s

R2sγ3s ) -R2sγ2s

s ) 1, 2, 3

(R1s, R2s, R3s, γ1s, γ2s, γ3s) ) {(a, 0, 0, -d, d, 0)
(0, b, b, 0, -e, e)
(c, 0, c, f, 0, f)

(22)

s ) 1, 2, 3

aX1 f (a - d)X1 + dX2

bX2 + bX3 f (b - e)X2 + (b + e)X3

cX1 + cX3 f (c + f)X1 + (c + f)X3 (23)

d ) 1, 2, ...,a; e ) -b, ... - 1, 1, ...,b;
f ) -1, -2, ...,-c

ν1,0 ) 2.59
ad

(24)

ν2,0 ) 2.405
be

ν3,0 ) -2.705
cf

a ) 5.18
φ1 - φ2 - φ3

(25)

b ) 4.81
φ1 + φ2 - φ3
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In Table 1 we find the values for theφ’s. Accordingly, (a, b,
c) ) (2, 1, 1) and, from (23), (d, e, f) ) ({1, 2}, {-1, 1}, -1).
Parametersd and e are double-valued. The requirement of
positive rates constants,ks, will partially solve this indetermi-
nacy, as we shall see now.

Once the stoichiometric coefficients have been found, system
11, together with (24) and the obtained values of the parameters
a to f, permits the computation of the rate constants,ks. The
valuee) -1 is thus eliminated ifk2 > 0. However, both values
for d are compatible withk1 > 0 and thus perfectly admissible.
We therefore recover the original system 19, with the same
values (k1 ) k2 ) k3 ) 1) initially given to the rate constants
in order to obtain numerically our starting Jacobian. Actually,
the derived mechanism is the same as (19), except for the first
reaction in (23), which can take any one of the following forms:

In fact, both reactions in (26) are dynamically indistinguish-
able, as they lead to identical rate laws. We thus cannot
discriminate between the two alternatives exclusively on
information obtained from the dynamics.

IV. The Case of Missing Feeding Rates,Oi

Let us assume that for a numberl (l < n) of the reacting
species, the feeding rates are null. From (12a)

In fact, we can actually be more general and assume that
there existl < n relationships of the form

with integer coefficientsQij, and such that the rank(Q) is
maximal. From (28), we have

which contains (27) as a particular case.
When following the procedure of section III, relations (29)

do slightly affect the calculation of the number of steps,m. To
see this, let us assume that we compute, as in section III, the
number of independent entriesJijXj,0. We shall presently denote
the result bym′. The reason by whichm′ is different fromms
the actual number of stepssbecomes apparent when we observe
that, by virtue of (29), we have only (m - l) independent rates
νs,0. This number has to coincide with the numberm′ of
independent equations in (12b). That is,m′ ) m - l. We must
then have a number of steps that is given by

The following example explains the difference introduced
with respect to what we had in section III.

A. Example 2. Let us deal with the same model (19) of
section III. In order to illustrate what has been said at the
beginning of this section, we makeφ2 ) 0. Obviously, in
comparison to example 1, that choice changes the steady state
values and the entries of the Jacobian matrix. In Table 2 we
display the new data of interest for this case.

By inspecting matrixΨ in Table 2 we find only two
independent entries:J22X2,0 andJ33X3,0, while the others comply
to

If we were to proceed for (31) as we did for (20), we would
infer that the model has only two steps (m ) 2). However, it is
easy to check that this conclusion does lead to a system (15)
that has no solution. As said before, this inconsistency is avoided
if, at this point, we take into account the requirement

Then, following the notation at the beginning of the section,
m′ ) 2 andl ) 1, and, by (30), the number of steps is actually
m ) 3. According to (32) one of the rates of reactions, sayν3,0,
is linearly dependent on the others

c ) 5.41
φ1 + φ2 + φ3

2X1 98
k1

2X2 (for d ) 2), or (26)

2X1 98
2k1

X1 + X2 (for d ) 1)

∑
s)1

m

γisνs,0 ) 0, i ) 1, ...,l (27)

∑
j)1

n

Qijφj ) 0, i ) 1, ...,l (28)

∑
s)1

m

(Q‚γ)isνs,0 ) 0, i ) 1, ...,l (29)

m ) m′ + l (30)

TABLE 2: Input Data in Example 2

J11X1,0 ) 3J22X2,0 + J33X3,0

J12X2,0 ) 0

J13X3,0 ) J22X2,0 + J33X3,0

J21X1,0 ) -2J22X2,0 (31)

J23X3,0 ) J22X2,0

J31X1,0 ) J22X2,0 + J33X3,0

J32X2,0 ) -J22X2,0

∑
s)1

m

γ2sνs,0 ) -φ2,0 ) 0 (32)
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There are still two independent entriesJijXj,0 in (12b), but
three rates,νs,0, related through (33).

Introducing (31) and (33) into (12b), and assumingν1,0 and
ν2,0 are independent, we obtain

The three simplest, chemically meaningful, parameter-de-
pendent solutions to (34) are

where

with b, c being natural numbers, andd, e, f, integers.
In comparison to (22), (35) depends on five parameterss

instead of six. Requirementφ2 ) 0 is responsible for this
decrease in the number of free parameters. The corresponding
three-step prototype mechanism follows from (35):

Notice that we obtain the same mechanism as in (23). The
only difference is on the value of parametera in (22), which is
now restricted toa ) 2b in (36).

We can now reproduce the procedure of section III and
determine parameters in (36) from the values ofφ1 andφ3. We
arrive at the same conclusions: that is, except for the indeter-
minacy (26) in the first reaction, we recover model (19), with
rate constantsk1 ) k2 ) k3 ) 1.

V. Directions for Future Research

We have developed in previous sections a procedure for the
establishment of a detailed mechanism in chemical networks,
starting fromwell-definedJacobian matrix elements. However,
as pointed out in the Introduction, a model-maker chemist faced
with the task of obtaining a Jacobian from finite-precision or
noisy experimental measurements will not always be able to
satisfy this requirement. As we have already mentioned, a
detailed solution to this problem demands a lengthy treatment
that is somewhat out of the scope of this article. Nevertheless,
this does not prevent us from discussing some of the issues at
stake and outlining possible alternatives to reach the objective
of a prototypical mechanism. Those issues are currently under
study.

The methods of section II have been found to work well.4

However, a performing data analysis will never compensate for
an uninformative time series. This is the reason why, even within
experimental limitations, the pulse perturbation and subsequent
sampling must be conducted with a carefully designed strategy.
Chevalier et al.1 have already stressed the importance in
discriminatingessentialfrom nonessentialspecies, if one wishes
to choose an appropriate species for the initial pulse perturbation.
The response to a perturbation in an essential species will
provide a balanced information on all time scalesseigenvaluess
while that of a nonessential species will not. Even so, the
perturbation strategy may well be further improved. In many
cases, a “cocktail” of different species proves to yield a better
response than a perturbation of a single species. A procedure
may be devised for calculating the optimal direction of
perturbation in phase space. For this purpose, a “learning”
algorithm using eigenvectors of computed Jacobians is currently
under development.

The sampling rate also deserves some attention, especially
in cases in which a very fast time scale dominates the relaxation.
A careless sampling may not provide a sufficient number of
points for catching appropriately that fast time scale.

On the other hand, we infer from sections III and IV the
necessity of extracting two sequential pieces of information from
the JMEs. One concerns the existing relationships among the
entriesJijXj,0, which lead to the establishment of the minimal
number of steps of the mechanism and the corresponding
relationships among the stoichiometric coefficients, (21) and
(34) and, consequently, to the prototype mechanisms (23) and
(36). Some of those relationships among theJijXj,0 can be spotted
even in the case of uncertain JMEs. We have made some
preliminary calculations in the case of time series with limited
precision. Even from these inevitably inexact output values for
the JMEs, and within a given tolerance, certain relationship
patterns start to appear. However, a criterion is needed for
distinguishing which are the real, structural equalities, as in (31),
and which are only apparent and due to uncertainties in the
computed JMEs. One possibility, which we are currently

ν3,0 ) -

∑
s)1

2

γ2sνs,0

γ23

(33)

(R1sγ1s - 3R2sγ2s - R3sγ3s) + (-R13

γ13

γ23
γ2s + 3R23γ2s +

R33

γ33

γ23
γ2s) ) 0

(R2sγ1s) + (-R23

γ13

γ23
γ2s) ) 0

(R3sγ1s - R2sγ2s - R3sγ3s) + (-R33

γ13

γ23
γ2s + R23γ2s +

R33

γ33

γ23
γ2s) ) 0

(R1sγ2s + 2R2sγ2s) + (-R13γ2s - 2R23γ2s) ) 0 (34)

(R3sγ2s - R2sγ2s) + (-R33γ2s + R23γ2s) ) 0

(R1sγ3s - R2sγ2s - R3sγ3s) + (-R13

γ33

γ23
γ2s + R23γ2s +

R33

γ33

γ23
γ2s) ) 0

(R2sγ3s + R2sγ2s) + (-R23

γ33

γ23
γ2s - R23γ2s) ) 0

s ) 1, 2

(R1s, R2s, R3s, γ1s, γ2s, γ3s) ) {(2b, 0, 0, -d, d, 0)
(0, b, b, 0, -e, e)
(c, 0, c, f, 0, f)

(35)

s ) 1, 2, 3

2bX1 f (2b - d)X1 + dX2

bX2 + bX3 f (b - e)X2 + (b + e)X3 (36)

cX1 + cX3 f (c + f)X1 + (c + f)X3

d ) 1, 2, ..., 2b; e ) -b, ... - 1, 1, ...,b;
f ) -1, -2, ...,-c
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investigating, is to change the feeding constants in order to get
Jacobians in some alternative steady states. It is expected that
the comparison of several Jacobian matrices will provide the
necessary discriminating information for uncovering the actual,
structural relationships between entries and discard the mis-
conceived ones. A strong argument in favor of this belief is
that the latter will not be invariant under a change of Jacobian.

The second piece of information is more stringent on the
exactness of the calculated values of the Jacobian and also
demands a precise control of the fluxes,φi. We recall that it
permitted to give specific numerical values to the stoichiometric
coefficients and rate constants. We can assume that the fluxes
can be eventually controlled and known with precision. How-
ever, if the values of the JMEs are know with limited precision,
nothing can be done and we shall have to make do with it in
order to roughly calculate the stoichiometric coefficients and
rate constants. These latter values can serve as first estimate to
guide the experimentalist in designing further tests on the
system. To the theoretician, they may be useful as initial guesses
in training algorithms designed for matching a parameter-
dependent set of nonlinear equations to a time series, once we
have a first approximate to the prototypical mechanism; it may
not be as concise as (23) and (36), but it can provide workable
parameter-dependent nonlinear equations of evolution. Any of
the methods7-10 developed for fitting nonlinear equations can
then be applied more successfully to the present case.

VI. Conclusions

We have presented a method that delivers a complete reaction
mechanism starting from the knowledge of a Jacobian and the
constant feeding rates of the involved species. We thus improve
previous approaches,1 which relied essentially on guessing
possible reactional steps from the signs of the JMEs.

The idea is the same that has motivated previous works on
the issue:1,2 to avoid the ambiguities on defining a model when
trying to do so from nonlinear data. The correspondence between
the time series and the equations of evolution is unambiguous
in the linear regime. Thus the obtainment of the Jacobian is

more a matter of technical detail than a really conceptual one.
We have not addressed in depth the specific problem of the
computation of the JMEs, though we have outlined some of
the methods that we are currently developing. However, a later
use of nonlinear time series should not be disregarded because,
once a prototypical mechanism has been determined from the
Jacobian, some of the model parameters may have been left
undetermined. This may happen when the required informations
Jacobian and/or feeding ratessis incomplete.

In order to be fully completed, our procedure in its present
state requires unequivocal values in data. It can nevertheless
arrive at a prototypical, basic mechanism from the single
knowledge of relations among the JMEs, but not necessarily
that of their exact values. Although, in that case, specific
stoichiometric coefficients and rate constants cannot be com-
puted, that prototypical mechanism may prove of great help and
can be completed by some additional informationsnonlinear,
for example. A deeper treatment of these issues will be the
matter of a future publication.
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